Validation of a prototype DiodeAir for small field dosimetry.

نویسندگان

  • T S A Underwood
  • J Thompson
  • L Bird
  • A J D Scott
  • P Patmore
  • H C Winter
  • M A Hill
  • J D Fenwick
چکیده

Standard commercial diode detectors over-respond within small radiation fields, an effect largely attributable to the relatively high mass-density of silicon. However, Monte Carlo studies can be used to optimise dosimeter designs and have demonstrated that 'mass-density compensation'-for example, introducing a low-density air-gap upstream of a diode's high-density silicon volume-can substantially improve instrument response. In this work we used egs_chamber Monte Carlo simulations to predict the ideal air-gap thickness for a PTW 60017 unshielded diode detector. We then developed a prototype instrument incorporating that air-gap and, for a 6 MV linac, tested it experimentally against EBT3 film. We also tested a further three prototypes with different air-gap thicknesses. Our results demonstrate that for a 10 × 10 cm(2) reference field the DiodeAir, a PTW 60017 diode with a built-in air-gap of 1 mm, has on-axis correction factors near unity. Laterally the DiodeAir performs very well off-axis and reports FWHM and penumbra values consistent with those measured using EBT3. For PDD measurement, the performance of the DiodeAir matches that of the original PTW 60017. The experimental focus of this work was 6 MV but we also simulated the on-axis response of the DiodeAir within 15 MV beams and found that our modification proved robust to this substantial increase in beam energy. However, the original diode 60017 does exhibit low energy scatter dependencies and may over-respond to high linac dose-rates such that applying the mass-density compensation method to an alternative instrument (particularly a diamond detector) could ultimately take us even closer to the small-field ideal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy and field size dependence of a silicon diode designed for small-field dosimetry

Purpose: To investigate the energy dependence/spectral sensitivity of silicon diodes designed for small-field dosimetry and obtain response factors (RFs) for arbitrary photon spectra using Monte Carlo (MC) simulations.   Methods: The EGSnrc user-code DOSRZnrc was used to calculate the dose deposition in water and in the active volume of a stereotactic diode f...

متن کامل

Small photon field dosimetry using EBT2 Gafchromic film and Monte Carlo simulation

Background: Small photon fields are increasingly used in modern radiotherapy especially in intensity modulated radiation therapy (IMRT) and stereotactic radiosurgery (SRS) treatments. Accurate beam profile and central axis depth doses measurements of such beams are complicated due to the electron disequilibrium. Hence the EBT2 (external beam therapy) Gafchromic film was used for dosimetry of sm...

متن کامل

Measurement Of Scatter Factors For Small Photon Fields Using Gaf chromic EBT2 Film

Introduction: Small field dosimetry is challenging for radiotherapy dosimetry. measurement of the output factor in the air and water (Sc, Scp) is one of the input parameters for commissioning of treatment planning systems and beam modeling. The aims of this study are to measured Sc,Scp for small fields with EBT2 and Ion chamber and design a appropriate mini-phantom for small fi...

متن کامل

Assessment of basic physical and dosimetric parameters of synthetic single-crystal diamond detector and its use in Leksell Gamma Knife and CyberKnife small radiosurgical fields

Background: To determine the basic physical and dosimetric properties of a new synthetic single-crystal diamond detector and its application for relative small field dosimetry. Materials and Methods: The pre-irradiation dose required to stabilize detector response, dose rate dependence, photon and electron energy dependence, temperature dependence and angular dependence of MicroDiamond detector...

متن کامل

Impact of region of interest size and location in Gafchromic film dosimetry

Introduction: Accurate film dosimetry requires careful consideration of sources of uncertainty. Some of the sources of uncertainty are dependent on the size and location of region of interest (ROI), especially in small fields. Avoiding the penumbra is often a reason for using a small ROI. In contrast, choosing very small ROIs may increase uncertainty due to the reduction of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 60 7  شماره 

صفحات  -

تاریخ انتشار 2015